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COMMENT 

Isomorphisms for random sequential packing on lattices 

J W Evans 
Ames Laboratory, Applied Mathematical Sciences, Iowa State University, Ames, Iowa, 
50011, USA 

Received 30 September 1986 

Abstract. Recently Nakamura reported results for two classes of random sequential packing 
problems on n x n square lattices. Non-overlapping squares covering a' cells are placed 
on the lattice either A allowing, or B forbidding contact. Here we demonstrate an exact 
isomorphism between these two classes, as well as a broader range of models (and their 
d-dimensional analogues). Nakamura first took the ti + zc infinite-lattice limit and then 
analysed convergence of the packing fraction, p (i.e. saturation or jamming coverage), to 
the a --* CO continuum limit (where A and B coincide). We obtain p values for model A 
with ti = m from the generalised Palasti conjecture (using exact d = 1 values), and develop 
a corresponding a + CC asymptotic expansion; the corresponding p values for model B are 
obtained from isomorphism arguments. These facilitate analysis of Nakamura's results. 
Isomorphisms and continuum limit behaviour are also discussed for processes on other 
lattices. 

Analysis of the hierarchical form of the master equations for d 3 1 dimensional versions 
of these lattice packing processes reveals an empty cell shielding property (Evans et 
a1 1983). This allows exact truncation solution of the n =CO infinite-lattice equations 
for d = 1 (Gonzalez et a1 1974, Epstein 1979, Wolf et a1 1984) and indicates appropriate 
approximate truncation procedures for d > 1. The latter have been implemented in 
d = 2 (with n = a) for model A with a = 2 (Nord and Evans 1985), but have limited 
utility (in their present form) for larger a. Recursive combinatorial techniques provide 
exact results for d = 1 with finite a and n, and therefore for various limits (MacKenzie 
1962). They have seen little use for d s 2 .  There have been extensive computer 
simulations for model A in d = 2 with various a and n, and limiting behaviour has 
been extracted (Blaisdell and Solomon 1970). The most general continuum limit, which 
fixes n / a  = L and lets a, n -*CO, corresponds to a 'car parking problem' of randomly 
packing (aligned) non-overlapping unit-volume hypercubes into a hypercubic region 
with side length L a  1. Palasti (1960) conjectured (for d = 2 and L = E) that the a = CO 

continuum packing fraction equals the d = 1 value raised to the power d. There has 
been some analysis of generalised Palasti conjectures (GPC) covering finite ( L  < CO) 

continuum cases, and both finite ( n  < E) and infinite ( n  = CO) lattice cases (with a < CO), 

for various d > 1 (Blaisdell and Solomon 1970). Here we utilise the latter for d = 2 .  
First, for points in d dimensions separated by a vector I = ( I , ,  I , ,  . . . , I d ) ,  we 

introduce an appropriate distance measure, /(111 = max, ( 1 / , 1 ) ,  i.e. the I" norm. We 
consider packing on d-dimensional periodic or  infinite hypercubic lattices (with unit 
lattice vector) by non-overlapping hypercubes, each covering a d  cells, such that a 
hypercube cannot cover cells whose centres are within an (integer) distance, r, from 
the centres of previously filled cells (i.e. range r blocking). We denote the corresponding 
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packing fractions by p ( a l r ) ,  and shall denote cases r = 0, 1 , 2 , .  . . , as packing models 
A, B, C, . . . (extending Nakamura's (1986) notation). Our central observation is that 
the process, for some specific a and r, is isomorphic to the packing of non-overlapping 
hypercubes covering ( a  + r ) d  cells, with range zero blocking? (see figure 1 for d = 2). 

Correspondingly, one has a - d p ( a / r )  = ( a  + r ) - d p ( a  + r10), which allows us to obtain 
packing fraction results for models B, C, . . . ,trivially from those of A. 

In models A, B, C, . . . , permanent (unfillable) gaps between the edges of adjacent 
hypercubes (of side length a )  can have width up to ( u - l ) / a ,  ( a + l ) / a ,  ( a +  
2) / a , .  . . , t imes the hypercube side length, respectively (cf unity for the continuum 
limit). Thus we expect the packing fraction for model A (B, C, . . .) to approach its 
continuum limit, p * ,  for finite or infinite L = n / a ,  from above (below), and the difference 
should scale like U - '  (with O(a- ' )  corrections) as a+0 .  Thus we write 
p ( a / O ) - p * + k , , , a ~ ' + k , , , a - ' + .  . . , with k,,,>O, and then isomorphism arguments 
imply that p(a l r ) -p*+k , , , a - '+k2 , ,a - '+ .  . . ,where  k l , , = - d r p * + k I , o ,  kz, ,= 
fd (d+ l ) r2p*- (d+ l ) rk , , o+k2 ,0 , .  . . . 

We now compare Nakamura's packing fraction results for d = 2 infinite lattices 
with those from the corresponding GPC (for model A), augmented with isomorphism 
arguments (for models B, C, . . .). GPC results are obtained from numerical integration 
of exactly truncated d = 1 infinite lattice ( n  = CO) hierarchy equations for random a-mer 
filling (Gonzalez et a1 1974, Epstein 1979). Exact GPC values for p *  3= 0.558 902 65 and 
kl,o-0.323 232 31 can be extracted (cf Blaisdell and Solomon 1970), and an estimate 
of k2,,= -0.0071 follows from Mackenzie's work. We find that p * +  k,,,a-' gives a 
very accurate estimate of the GPC p(aj0) for a b 10; Mackenzie's correction does not 
help here, but instead, choosing k2,0=0.1011 (and neglecting only O(a- ' )  terms) 
reproduce the GPC p(aJ0) to eight decimal places for a 3 100, and results in an 
underestimation for a =70, 50, 30, 20, 15 and 10 by only 1, 5 ,  38, 149, 346 and 1252 
(xlO-'), respectively (and thus is essentially exact). 

In figure 2, we have plotted first and second order asymptotic GPC behaviour for 
packing models A-D with a 3 10. Exact B, C and D GPC values (shown) deviate only 
slightly from the above second-order behaviour. Upon these plots, we have superim- 
posed Nakamura's model A(B) simulation results for a = 10, 15, 20 and 30, together 
with values obtained from these by isomorphism arguments for models B, C'and D 
(A, C and D). It appears that Nakamura's results for model A are more reliable than 

(0) ( b l  

Figure 1 .  Examples of d = 2 isomorphisms for the packing of squares covering a" cells 
( i .e.  squares of side length a lattice vectors) with range r blocking ( in  the I" norm).  ( a ) ,  
( a , r ) = ( I , l ) a n d ( Z , O ) ;  ( 6 ) , i a , r ) = ( 2 , 2 ) a n d ( 4 , 0 ) .  

t This isomorphism has been noted previously for d = 1 i Wolf et a /  1984) a n d  d = 2 with a = r = 1 ( N o r d  
and  Evans 1985). 



Isomorphisms for random sequential packing on lattices 3065 

1 io 

Figure 2. Comparison of Nakamura's results for packing fractions (0);  results obtained 
from Nakamura's by isomorphism arguments (+); and results obtained from the generalised 
Palasti conjecture (GPC) and its large-a asymptotic expansion (- - -, first order; -, 
second order, 0, exact). 

those for B (the a = 30 B value seems particularly low) and, furthermore, that linear 
extrapolation of these A values to a = CO should be more reliable (and justifiable) than 
for the B values. This is consistent with the result of Jodrey and Tory (1980) for 
p* = 0.562 10 i 0.000 56. Finally, we remark on the uniformly high accuracy of the GPC 

for small a. (Compare Nakamura's p values with the squares of the d = 1 results of 
Gonzalez et a/ (1974). In particular, compare the GPC ~ ( 2 1 0 )  = 0.747 645 . . . with the 
recent computer simulation result 0.747 88 * 0.000 11 of Nord (1986).) 

We now describe a number of other packing problems between which isomorphisms 
exist. 

( I )  We can change the above distance measure to 11111 = X i  l l i l ,  i.e. the 1' norm. This 
leads to consideration of packing on a hypercubic lattice (with unit lattice vector) of 
hyperdiamond shaped blocks of N ( a )  cells with centres within a distance a - 1 from 
a central one, and with range r blocking (defined by the 1' norm). See figure 3 ( a )  for 
d = 2 where N ( a )  = 2a2 - 2a + 1. In the continuum limit ( a  -,CO), this problem reduces 
to the one described above. 

(11) Analogous packing problems can be considered on a hexagonal lattice, where 
the distance between two cells is defined as the number of links (between adjacent 
cell centres) in the shortest connecting path. Here we consider packing of blocks of 
N ( a )  = 3a2  - 3a + 1 cells whose centres are within a distance a - 1 of a central one, 
and with range r blocking (see figure 3 ( b ) ) .  In the continuum limit ( u + c o ) ,  this 
problem reduces to the packing of (aligned) hexagons in the plane. 

(111) For a triangular lattice, consider the packing of hexagonal shaped blocks of 
N ( a )  = 6a2 cells (the hexagon side length is a-lattice vectors) with range r blocking 
(see figure 3 ( c ) ) .  For the latter, the distance between edges of different hexagons 
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Figure 3. Examples of d = 2 isomorphisms for packing models ( I (a ) ,  (a, r )  = ( 1 , 3 )  and 
( 2 ,  1 )  (left); (a, r )  = ( 2 , 2 )  and ( 3 , O )  (right)), ( I I ( b ) ,  (a,  r )  = (1,2) and ( 2 , O ) )  and ( I I I ( c ) ,  
(a, r )  = ( 1 , 5 )  and (3, l ) ) ,  involving various objects (blocks of cells) of 'linear size' a, with 
range r blocking (in I '  type norms). 

(determined by the path involving the shortest number of steps between adjacent lattice 
sites) cannot be less than r. The continuum limit ( a  +CO) here is the same as for 11. 

For any of I ,  I1 or 111, we denote the process for specific a and r by $ ( a i r ) ,  and 
its packing fraction by p ( a 1 r ) .  Then for each of these classes, we have that P(al2r') 
(P(al2r'+ 1)) is isomorphic to P(u  + r'10) ( P ( a  + r' l l ) )  (see figure 3). Correspondingly, 
one has that N ( a ) - ' p ( a l 2 r ' )  = N ( a  + r ' ) - ' p ( u  + r'l0) and N ( a ) - ' p ( a / 2 r ' +  1) = 
N ( a  + r ' ) - ' p ( u  + r'll).  Arguments used previously apply here to show that p ( a l 0 )  
( p (  a1 r > 0)) approach their continuum limit ( a  + CO) values above (below). 

Note that the above isomorphisms connect only processes with even (or odd) 
blocking range r. It is possible to relate processes of opposite parity r on (the mutually 
dual) hexagonal (11) and triangular (111) lattices. Specifically, one has that Pll l(aIl)  
is isomorphic to $ , , ( a  + 110) so, e.g., P l l l ( u ~ 2 r ' +  1) is isomorphic to $, , (a  + r '+  110); 
similarly $,,(all) is isomorphic to $III(alO) so, e.g., Pll(a12r'+ 1) is isomorphic to 
PI,,( U + r'(0) (see figure 4). Corresponding relationships between packing fractions 
follow immediately. 

Finally we describe some isomorphisms between the cell packing processes con- 
sidered above and certain site filling processes. Clearly packing of hypercubes covering 
a d  cells is isomorphic to filling hypercubic blocks of a d  sites (cf Nord and Evans 
1985) (or of smaller blocks of aId sites with a compensating /"-type range a - a '  
blocking). Cell filling models I, I1 and 111 can be readily related to single-site filling 
processes with an appropriate blocking range. Here, for the latter, distances must be 
determined from the path involving the shortest number of steps between adjacent 
sites. Then (i) Pl(alr), (i i)  Pll(alr) and (iii) P,,,(alr) are isomorphic to single-site 
filling on (i)  hypercubic, (ii) triangular and (iii) triangular lattices with range ( i )  
2a + r - 2 ,  (i i)  2a + r - 2 and (iii) 2a + r - 1 blocking, respectively. 
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Figure 4. Examples of isomorphisms between packing models ( I 1  and 111) on hexagonal 
and triangular lattices (respectively) with range 0 and 1 blocking. ( a ) ,  (a, r )  = (2, 1)11 and 
(2, O)lll; ( b ) ,  (a ,  = (2, 1)111 and (3, O l I l .  

In summary, we have described exact isomorphisms between various random 
sequential packing or filling processes (on periodic or infinite lattices). These were 
used to facilitate analysis of the continuum limit in Nakamura’s square packing models. 
(Only infinite n / a  was considered, but the finite case could similarly treated.) The 
GPC was particularly useful here, but lacks an analogue for packing of non-square (or 
non-hypercubic) blocks of cells. 
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